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1. INTRODUCTION

It is well known that the theory of functions from Qp into C plays an important role in p-adic quantum
mechanics, the theory of p-adic probability in which real-valued random variables have to be considered
to solve covariance problems (see, for example, [12, 17, 28] and references therein). In recent years, p-
adic analysis has got a lot of attention by its important application in mathematical physics. In particular,
there is an increasing interest in the study of p-adic wavelet analysis and p-adic harmonic analysis, for
instance, p-adic Hardy, p-adic Hardy-Cesàro, p-adic Hausdorff operator as well as their applications
(see [1, 4–7, 10, 14, 18, 20, 25, 29–31] and references therein).

In 1984, Carton-Lebrun and Fosset [3] studied the weighted Hardy-Littlewood average operator as
follows

Hϕ(f)(x) =

∫ 1

0
ϕ(y)f(yx)dy, x ∈ Rn,

where ϕ : [0, 1] → [0,∞) is a measure function. In 2001, J. Xiao [32] established the necessary and
sufficient conditions for the boundedness of Hϕ and obtained its norm on the Lebesgue and BMO
spaces. Next, in 2014, Chuong and Hung [9] introduced the Hardy-Cesàro operator defined by

Cϕ,s(f)(x) =

∫ 1

0
ϕ(y)f(s(y)x)dy, x ∈ Rn,

where ϕ : [0, 1] → [0,∞) and s : [0, 1] → R are measurable functions. On the p-adic fields, the Hardy-
Cesàro operator introduced by Hung [14] as follows

Cp
ϕ,s(f)(x) =

∫
Z∗
p

ϕ(y)f(s(y)x)dy, x ∈ Qn
p ,
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where ϕ is a locally integrable function on Z∗
p and s : Z∗

p → Qp is a measurable function. Obviously,
by setting s(y) = y, the operator Cp

ϕ,s then reduces to the p-adic weighted Hardy-Littlewood average
operator studied by Rim and Lee [24] as follows

Hp
ϕf(x) =

∫
Z∗
p

f(yx)ϕ(y)dy, x ∈ Qn
p .

Especially, for n = 1 and ϕ = 1, the operator Hp
ϕ reduces to p-adic Hardy operator defined by

Hpf(x) =
1

|x|p

∫
|y|p≤|x|p

f(y)dy.

For further information on the p-adic Hardy-Cesàro operators as well as their applications, one can be
found in [4, 7, 14, 29, 31] and therein references. Remark that the operator Hp

ϕ is closely connected with
solution of some pseudo-differential equations on p-adic fields posed by Kochubei [19] as follows{

Dαυ + a(|x|p)υ = f(|x|p), x ∈ Qp,

υ(0) = 0,

where Dα is the Vladimirov operator of order α. The solution of this problem is found in terms of the form
υ = R

p
α(u), where Rp

α is the p-adic Riemann-Liouville fractional operator defined by

Rp
α(u)(x) =

1− p−α

1− pα−1

∫

|y|p≤|x|p

(
|x− y|α−1

p − |y|α−1
p

)
u(y)dy. (1.1)

It is easy to see that

Rp
α(u)(x) =

(
Hp

ϕ1
u(x)−Hp

ϕ2
u(x)

)
|x|αp ,

where

ϕ1(y) =
1− p−α

1− pα−1
|1− y|α−1

p , and ϕ2(y) = ϕ1(1− y).

In recent years, the weighted Hardy-Littlewood average operators, Hardy-Cesàro operators and
Hausdorff operators and their commutators have been significantly developed into different contexts
(see [2, 6, 7, 9–11, 22, 23, 25]). As is well known, the theory of commutators plays an important role
in the study of the regularity of solutions to partial differential equations. In this paper, we discuss the
commutators of Coifman-Rochberg-Weiss type of p-adic Hardy-Cesàro operators as follows

Cp,b
ϕ,s(f)(x) =

∫
Z∗
p

ϕ(y)
(
b(x)− b(s(y)x)

)
f(s(y)x)dy, x ∈ Qn

p .

In case s(y) = y, Cp,b
ϕ,s will reduce to the commutator of Hardy-Littlewood operators Hp,b

ϕ as follows

Hp,b
ϕ (f)(x) =

∫
Z∗
p

ϕ(y)
(
b(x)− b(yx)

)
f(yx)dy, x ∈ Qn

p .

The main purpose of this paper is to establish some sufficient conditions for the boundedness of
the commutator Cp,b

ϕ,s with symbols in weighted central BMO type spaces on the p-adic Herz spaces,
p-adic Morrey spaces and p-adic Morrey-Herz spaces associated with both power weights and the
Muckenhoupt weights. As a consequence, we also have the boundedness of commutators Hp,b

ϕ on such
spaces.

Our paper is organized as follows. In Section 2, we present some notations and definitions of p-adic
analysis, the class of Muckenhoupt weights on the p-adic field as well as some p-adic weighted function
spaces such as p-adic Morrey, Herz, Morrey-Herz and central BMO spaces. Our main results are given
and proved in Section 3.
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2. SOME NOTATIONS AND DEFINITIONS

Let us give a brief introduction on p-adic analysis. For a more complete information to p-adic
analysis, see [17, 28] and the references therein. For a prime number p, denote by Qp the field of p-
adic numbers. This field is the completion of the field of rational numbers with respect to the non-
Archimedean p-adic norm | · |p. This norm is defined as follows: |0|p = 0; if x �= 0 is an arbitrary
rational number with the unique representation x = pk m

n , where m,n are not divisible by p, k ∈ Z, then
|x|p = p−k. It is easy to verify that this norm has the following properties:

(i) |x|p ≥ 0, ∀x ∈ Qp, |x|p = 0 ⇔ x = 0;

(ii) |xy|p = |x|p|y|p, ∀x, y ∈ Qp;

(iii) |x+ y|p ≤ max(|x|p, |y|p), ∀x, y ∈ Qp, and when |x|p �= |y|p, we have |x+ y|p = max(|x|p, |y|p).
Moreover, any non-zero p-adic number x ∈ Qp can be uniquely represented in the canonical series

x = pk(x0 + x1p+ x2p
2 + · · · ), (2.1)

where k ∈ Z, xm = 0, 1, ..., p − 1, x0 �= 0, m = 0, 1, .... This series, of course, converges in the p-adic
norm since |xmpk|p ≤ p−k.

Let Qn
p = Qp × · · · ×Qp. The p-adic norm of Qn

p is defined as follows

|x|p = max
1≤i≤n

|xi|p, x = (x1, ..., xn). (2.2)

Let

Bk(a) =
{
x ∈ Qn

p : |x− a|p ≤ pk
}

be a ball of radius pα with center at a ∈ Qn
p . Similarly, denote by

Sk(a) =
{
x ∈ Qn

p : |x− a|p = pk
}

the sphere with center at a ∈ Qn
p and radius pα. Denote Bk = Bk(0), Sk = Sk(0). Thus for any x0 ∈ Qn

p

we get x0 +Bk = Bk(x0) and x0 + Sk = Sk(x0). Especially, we denote Zp instead of B0, Z∗
p = B0 \ {0}

in Qp, Q∗
p = Qp \ {0} and χk be the characteristic function of the sphere Sk.

It is known that there exists a Haar measure dx on Qn
p , which is unique up to positive constant

multiple and is translation invariant. This measure is unique by normalizing dx such that∫

B0

dx = |B0| = 1,

where |B| denotes the Haar measure of a measurable subset B of Qn
p . For f ∈ L1

loc(Q
n
p ), we have

∫
Qn

p

f(x)dx = lim
k→+∞

∫
Bk

f(x)dx = lim
k→+∞

∑
−∞<m≤k

∫
Sm

f(x)dx.

In the case f ∈ L1(Qn
p ), one may write

∫
Qn

p
f(x)dx =

∑+∞
m=−∞

∫
Sm

f(x)dx. By simple calculation, it is

easy to obtain that |Bα(a)| = pnα, |Sα(a)| = pnα(1− p−n) 
 pnα, for any a ∈ Qn
p . Besides that, we also

have ω(Bα) 
 pα(n+γ) with ω(x) = |x|γp (γ > −n).

Let ω be a positive measurable function almost everywhere in Qn
p . The weighted Lebesgue space

Lq
ω(Qn

p ) (0 < q < ∞) is defined to be the space of all Haar measurable functions f on Qn
p such that

‖f‖Lq
ω(Qn

p )
=

(∫
Qn

p

|f(x)|qω(x)dx
)1/q

< ∞.
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The space Lq
ω, loc(Q

n
p ) is defined as the set of all measurable functions f on Qn

p satisfying∫
K |f(x)|qω(x)dx < ∞ for any compact subset K of Qn

p . The space Lq
ω,loc(Q

n
p \ {0}) is also defined in a

similar way as the space Lq
ω,loc(Q

n
p ).

Throughout the whole paper, we denote by C a positive geometric constant that is independent of the
main parameters, but can change from line to line. Denote ω(B)λ =

(∫
B ω(x)dx

)λ, for λ ∈ R. We also
write a � b to mean that there is a positive constant C, independent of the main parameters, such that
a ≤ Cb. The symbol f 
 g means that f is equivalent to g (i.e. C−1f ≤ g ≤ Cf ). For any real number
	 > 1, denote by 	′ conjugate real number of 	, i.e. 1

� +
1
�′ = 1.

Let us give the definition of weighted λ-central Morrey p-adic spaces.

Definition 2.1. Let λ ∈ R and 1 < q < ∞. The weighted λ-central Morrey p-adic spaces
.
B

q,λ

ω (Qn
p )

consists of all Haar measurable functions f ∈ Lq
ω,loc(Q

n
p ) satisfying ‖f‖ .

B
q,λ

ω (Qn
p )

< ∞, where

‖f‖ .
B

q,λ

ω (Qn
p )

= sup
γ∈Z

( 1

ω(Bγ)1+λq

∫
Bγ

|f(x)|qω(x)dx
)1/q

. (2.3)

Remark that
.
B

q,λ

ω (Qn
p ) is a Banach space and reduces to {0} when λ < −1

q .

We also present some definitions of the weighted Herz and Morrey-Herz p-adic spaces.

Definition 2.2. Let β ∈ R, 0 < q < ∞ and 0 < 	 < ∞. The weighted Herz p-adic space Kβ,�
q,ω(Qn

p ) is
defined as the set of all functions f ∈ Lq

ω,loc(Q
n
p \ {0}) such that ‖f‖

Kβ,�
q,ω(Qn

p )
< ∞, where

‖f‖
Kβ,�

q,ω(Qn
p )

=
( ∞∑

k=−∞
pkβ�‖fχk‖�Lq

ω(Qn
p )

)1/�
. (2.4)

Definition 2.3. Let β ∈ R, 0 < q < ∞ and 0 < 	 < ∞. The weighted Herz p-adic space
.
K

β,�,q

ω (Qn
p )

is defined as the set of all functions f ∈ Lq
ω,loc(Q

n
p \ {0}) such that

‖f‖ .
K

β,�,q

ω (Qn
p )

=
( ∞∑

k=−∞
ω(Bk)

β�/n‖fχk‖�Lq
ω(Qn

p )

)1/�
< ∞. (2.5)

Definition 2.4. Let β ∈ R, 0 < q < ∞, 0 < 	 < ∞ and λ be a non-negative real number. The
weighted Morrey-Herz p-adic space is defined by

MKβ,λ
�,q,ω(Q

n
p ) =

{
f ∈ Lq

ω,loc(Q
n
p \ {0}) : ‖f‖

MKβ,λ
�,q,ω(Q

n
p )

< ∞
}
,

where

‖f‖
MKβ,λ

�,q,ω(Q
n
p )

= sup
k0∈Z

p−k0λ
( k0∑

k=−∞
pkβ�‖fχk‖�Lq

ω(Qn
p )

)1/�
. (2.6)

Let us recall to define the weighted central BMO p-adic space.

Definition 2.5. Let 1 ≤ q < ∞ and ω be a weight function. The central bounded mean oscillation

space
.

CMO
q

ω(Q
n
p ) is defined as the set of all functions f ∈ Lq

ω,loc(Q
n
p ) such that

∥∥f∥∥ .
CMO

q

ω(Q
n
p )

= sup
γ∈Z

( 1

ω(Bγ)

∫

Bγ

|f(x)− fω,Bγ |qω(x)dx
) 1

q
< ∞, (2.7)
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where

fω,Bγ =
1

ω(Bγ)

∫

Bγ

f(x)ω(x)dx.

It is well known that the theory of Aq weight was first introduced by Benjamin Muckenhoupt
on the Euclidean spaces to characterise the boundedness of Hardy-Littlewood maximal functions on
the weighted Lebesgue spaces (see [21] for further detail). For Aq weights on the p-adic fields, more
generally, on the local fields or homogeneous type spaces, see [8, 15] for more details.

Definition 2.6. Let 1 < 	 < ∞. We say that a weight ω ∈ A�(Q
n
p ) if there exists a constant C such

that for all balls B,
( 1

|B|

∫
B
ω(x)dx

)( 1

|B|

∫
B
ω(x)−1/(�−1)dx

)�−1
≤ C.

We say that a weight ω ∈ A1(Q
n
p ) if there is a constant C such that for all balls B,

1

|B|

∫
B
ω(x)dx ≤ C essinf

x∈B
ω(x).

We denote by A∞(Qn
p ) =

⋃
1≤�<∞

A�(Q
n
p ).

Let us recall the following standard result related to the Muckenhoupt weights.

Proposition 2.7. (i) A�(Q
n
p ) � Aq(Q

n
p ), for 1 ≤ 	 < q < ∞.

(ii) If ω ∈ A�(Q
n
p ) for 1 < 	 < ∞, then there is an ε > 0 such that 	− ε > 1 and ω ∈ A�−ε(Q

n
p ).

It is said that ω satisfies the reverse Hölder condition of order r > 1 (in symbols ω ∈ RHr(Q
n
p )) iff

there exists a constant C such that(
1

|B|

∫
B
ω(x)rdx

)1/r

≤ C

|B|

∫
B
ω(x)dx,

for all balls B ⊂ Qn
p . By virtue of Theorem 19 and Corollary 21 in [16], we have ω ∈ A∞(Qn

p ) if
and only if there exists some r > 1 such that ω ∈ RHr(Q

n
p ). Moreover, if ω ∈ RHr(Q

n
p ), r > 1, then

ω ∈ RHr+ε(Q
n
p ) for some ε > 0. We thus write rω = sup{r > 1 : ω ∈ RHr(Q

n
p )} to denote the critical

index of ω for the reverse Hölder condition.

To end this section, let us give some standard properties of A� weights which they are proved in the
similar way as the setting (see Proposition 2.4 and Proposition 2.5 in [22] for more details).

Proposition 2.8. If ω ∈ A�(Q
n
p ), 1 ≤ 	 < ∞, then for any f ∈ L1

loc(Q
n
p ) and any ball B ⊂ Qn

p ,

1

|B|

∫
B
|f(x)|dx ≤ C

(
1

ω(B)

∫
B
|f(x)|�ω(x)dx

)1/�

.

Proposition 2.9. Let ω ∈ A�(Q
n
p ) ∩RHr(Q

n
p ), 	 ≥ 1 and r > 1. Then, there exist constants

C1, C2 > 0 such that

C1

(
|E|
|B|

)�

≤ ω(E)

ω(B)
≤ C2

(
|E|
|B|

)(r−1)/r

for any measurable subset E of a ball B.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 13 No. 4 2021



WEIGHTED CENTRAL BMO 271

3. THE MAIN RESULTS

Let first us give the boundedness for the commutators of p-adic Hardy-Cesàro operators on the
Morrey p-adic spaces with the power weight.

Theorem 3.1. Let 1 ≤ q < ∞, 1 < q1, r1 < ∞ such that 1/q = 1/q1 + 1/r1, and 1/q1 < λ < 0. Let

b ∈
.

CMO
r1

ω (Qn
p ) and ω(x) = |x|γp for γ > −n. If

A1 =

∫
Z∗
p

|s(y)|(n+γ)λ
p ψ(y)|ϕ(y)|dy < ∞,

where

ψ(y) = 1 + |logp|s(y)|p|,

then C
p,b
ϕ,s is bounded from

.
B

q1,λ

ω (Qn
p ) to

.
B

q,λ

ω (Qn
p ).

Proof. For simplicity of notation, we denote ψ1(y) = |s(y)|
− (n+γ)

q1
p ψ(y). Let first us prove the following

inequality

‖Cp,b
ϕ,s(f)‖Lq

ω(Bη) � ‖b‖ .
CMO

r1
ω (Qn

p )
p

η(n+γ)
r1

∫
Z∗
p

|ϕ(y)|ψ1(y)‖f‖Lq1
ω (Bη+m)dy, (3.1)

for any η ∈ Z, where m = logp|s(y)|p. Indeed, using the Minkowski inequality and the Hölder inequality,
we have

∥∥Cp,b
ϕ,s(f)

∥∥
Lq
ω(Bη)

�
∫

Z∗
p

|ϕ(y)|‖b(·) − b(s(y)·)‖Lr1
ω (Bη)

‖f(s(y)·)‖Lq1
ω (Bη)

dy. (3.2)

Now we need to show that

‖b(·)− b(s(y)·)‖Lr1
ω (Bη)

� p
η(n+γ)

r1

(
1 + logp|s(y)|pχ{|s(y)|p≥p} − logp|s(y)|pχ{|s(y)|p≤1}

)∥∥b∥∥ .
CMO

r1
ω (Qn

p )
. (3.3)

For simplicity of notation, we put

K1 = ‖b(·)− bω,Bη‖Lr1
ω (Bη)

,

K2 = ‖b(s(y)·)− bω,Bη+m‖Lr1
ω (Bη)

,

and

K3 = ‖bω,Bη − bω,Bη+m‖Lr1
ω (Bη)

.

Thus it is easy to see that ∥∥b(·)− b(s(y)·)
∥∥
L
r1
ω (Bη)

≤ K1 +K2 +K3. (3.4)

It follows from the definition of the space
.

CMO
r1

ω (Qn
p ) that

K1 ≤ ω(Bη)
1
r1

∥∥b∥∥ .
CMO

r1
ω (Qn

p )
� p

η(n+γ)
r1

∥∥b∥∥ .
CMO

r1
ω (Qn

p )
. (3.5)

Let next us estimate K2. Using the formula for change of variables, one has

K2 =
( ∫

Bη

|b(s(y)x) − bω,Bη+m |r1ω(x)dx
) 1

r1
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=
( ∫

Bη+m

|b(z) − bω,Bη+m |r1 |s(y)−1z|γp |s(y)−n|pdz
) 1

r1

≤ |s(y)|
− (n+γ)

r1
p ω(Bη+m)

1
r1

( 1

ω(Bη+m)

∫

Bη+m

|b(z)− bω,Bη+m |r1ω(z)dz
) 1

r1

� p
η(n+γ)

r1

∥∥b∥∥ .
CMO

r1
ω (Qn

p )
. (3.6)

By the Hölder inequality, for all k ∈ Z, we also have
∣∣bω,Bk

− bω,Bk+1

∣∣ ≤ 1

ω(Bk)

∫

Bk

∣∣b(x)− bω,Bk+1

∣∣ω(x)dx

≤ ω(Bk+1)
1
r′
1

ω(Bk)

( ∫

Bk+1

∣∣b(x)− bω,Bk+1

∣∣r1ω(x)dx)
1
r1

≤ ω(Bk+1)

ω(Bk)

∥∥b∥∥ .
CMO

r1
ω (Qn

p )
�

∥∥b∥∥ .
CMO

r1
ω (Qn

p )
.

For m ≥ 1, we get∣∣bω,Bη − bω,Bη+m

∣∣ ≤ ∣∣bω,Bη − bω,Bη+1

∣∣+ · · · +
∣∣bω,Bη+m−1 − bω,Bη+m

∣∣
� m

∥∥b∥∥ .
CMO

r1
ω (Qn

p )
= logp|s(y)|p‖b‖ .

CMO
r1
ω (Qn

p )
.

Otherwise, ∣∣bω,Bη − bω,Bη+m

∣∣ � −m‖b‖ .
CMO

r1
ω (Qn

p )
= −logp|s(y)|p‖b‖ .

CMO
r1
ω (Qn

p )
.

Consequently,

K3 ≤ ω(Bη)
1
r1

∣∣bω,Bη − bω,Bη+m

∣∣
� ω(Bη)

1
r1

(
logp|s(y)|pχ{|s(y)|p≥p} − logp|s(y)|pχ{|s(y)|p≤1}

)
‖b‖ .

CMO
r1
ω (Qn

p )
. (3.7)

This, together with inequalities (3.4), (3.5) and (3.6), yields that the inequality (3.3) holds. On the other
hand, it is not hard to show that

‖f(s(y)·)‖Lq1
ω (Bη)

≤ |s(y)|
−(n+γ)

q1
p ‖f‖Lq1

ω (Bη+m).

Combining this inequality with (3.2) and (3.3) above, the inequality (3.1) is proved.

Let us now give the proof of the theorem as follows. For any η ∈ Z, by (3.1), one has

1

ω(Bγ)
1
q
+λ

‖Cp,b
ϕ,s(f)‖Lq

ω(Bη) � ‖b‖ .
CMO

r1
ω (Qn

p )

⎛
⎝
∫
Z∗
p

|ϕ(y)|ψ1(y)
p

η(n+γ)
r1 ω(Bη+m)

1
q1

+λ

ω(Bη)
1
q
+λ

dy

⎞
⎠ ‖f‖ .

B
q1,λ

ω (Qn
p )
.

By the condition 1/q = 1/q1 + 1/r1, we estimate

p
η(n+γ)

r1 ω(Bη+m)
1
q1

+λ

ω(Bη)
1
q
+λ


 p
η(n+γ)

r1 p
(η+m)(n+γ)( 1

q1
+λ)

p
η(n+γ)( 1

q
+λ)

= |s(y)|
(n+γ)( 1

q1
+λ)

p ,

which implies

‖Cp,b
ϕ,s(f)‖ .

B
q,λ

ω (Qn
p )

� A1‖b‖ .
CMO

r1
ω (Qn

p )
‖f‖ .

B
q1,λ

ω (Qn
p )
.

Thus the proof of the theorem is finished.
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By virtue of Theorem 3.1, we immediately have the following result.

Corollary 3.2. Let the assumptions of Theorem 3.1 hold. If

B1 =

∫
Z∗
p

|ϕ(y)||y|(n+γ)λ
p logp

p

|y|p
dy < ∞,

then

‖Hp,b
ϕ ‖ .

B
q1,λ

ω (Qn
p )→

.
B

q,λ

ω (Qn
p )

� B1‖b‖ .
CMO

r1
ω (Qn

p )
.

Next, the boundedness for the commutators of p-adic Hardy-Cesàro operators on the Morrey p-adic
spaces with the Muckenhoupt weight is given as follows.

Theorem 3.3. Let 1 ≤ q, q∗1, r
∗
1 , ζ < ∞,−1/q∗1 < λ < 0 and 1 < δ < rω. Let b ∈

.
CMO

r∗1
ω (Qn

p ), and
ω ∈ Aζ with the finite critical index rω for the reverse Hölder condition such that

1

q
>

( 1

q∗1
+

1

r∗1

)
ζ

rω
rω − 1

. (3.8)

If

A2 =

∫
Z∗
p

(
|s(y)|nζλp χ{|s(y)|p≤1} + |s(y)|

n(δ−1)λ
δ

p χ{|s(y)|p≥p}

)
ψ(y)|ϕ(y)|dy < ∞,

where ψ(y) is given in Theorem 3.1, then C
p,b
ϕ,s is bounded from

.
B

q∗1 ,λ
ω (Qn

p ) to
.
B

q,λ

ω (Qn
p ).

Proof. First, we prove the following inequality

‖Cp,b
ϕ,s(f)‖Lq

ω(Bη) � ‖b‖ .
CMO

r∗1
ω (Qn

p )

⎛
⎝
∫
Z∗
p

|ϕ(y)|ψ(y) ω(Bη)
1
q

ω(Bη+m)
1
q∗
1

‖f‖
L
q∗1
ω (Bη+m)

dy

⎞
⎠ , (3.9)

for any η ∈ Z, where recall again m = logp|s(y)|p. Indeed, by the condition (3.8), there exist r1, q1 such
that

1

q1
>

ζ

q∗1

rω
rω − 1

,
1

r1
>

ζ

r∗1

rω
rω − 1

, and
1

q1
+

1

r1
=

1

q
. (3.10)

Arguing as in Theorem 3.1, we also get the relation (3.2). We still denote K1 = ‖b(·) − bω,Bη‖Lr1
ω (Bη)

,

K2 = ‖b(s(y)·) − bω,Bη+m‖Lr1
ω (Bη)

and K3 = ‖bω,Bη − bω,Bη+m‖Lr1
ω (Bη)

as in the proof of Theorem 3.1
above for convenience. By r1 < r∗1, this leads to

K1 ≤ ω(Bη)
1
r1 ‖b‖ .

CMO
ri
ω (Qn

p )
≤ ω(Bη)

1
r1 ‖b‖ .

CMO
r∗
1

ω (Qn
p )
. (3.11)

By (3.10), there exists β1 ∈ (1, rω) satisfying r∗1/ζ = r1β
′
1. Thus, by applying the Hölder inequality, the

reverse Hölder condition and Proposition 2.8, we infer

K2 ≤
(∫

Bη

|b(s(y)x)− bω,Bη+m |
r∗1
ζ dx

) ζ
r∗1
(∫

Bη

ω(x)β1dx
) 1

β1r1

� |Bη|
−ζ
r∗1 ω(Bη)

1
r1

(∫
Bη

|b(s(y)x)− bω,Bη+m |
r∗1
ζ dx

) ζ
r∗
1

≤ |Bη|
−ζ
r∗
1 ω(Bη)

1
r1 |s(y)|

−nζ
r∗1

p

( ∫
Bη+m

|b(z)− bω,Bη+m |
r∗1
ζ dz

) ζ
r∗1

� |Bη|
−ζ
r∗1 ω(Bη)

1
r1 |s(y)|

−nζ
r∗
1

p
|Bη+m|

ζ
r∗1

ω(Bη+m)
1
r∗
1

( ∫
Bη+m

|b(z)− bω,Bη+m |r
∗
1ω(z)dz

) 1
r∗
1
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� ω(Bη)
1
r1 ‖b‖ .

CMO
r∗
1

ω (Qn
p )
. (3.12)

Besides that, by (3.7) and r1 < r∗1, we get

K3 � ω(Bη)
1
r1

(
logp|s(y)|pχ{|s(y)|p≥p} − logp|s(y)|pχ{|s(y)|p≤1}

)
‖b‖ .

CMO
r∗1
ω (Qn

p )
.

Hence, by (3.11) and (3.12), we conclude

‖b(·)− b(s(y)·)‖Lr1
ω (Bη)

� ω(Bη)
1
r1 ψ(y)‖b‖ .

CMO
r∗
1

ω (Qn
p )
. (3.13)

By (3.10) and estimating as (3.12) above, we can show that(∫
Bη

|f(s(y)x)|q1ω(x)dx
) 1

q1

� ω(Bη)
1
q1 ω(Bη+m)

−1
q∗1 ‖f‖

L
q∗
1

ω (Bη+m)
.

Consequently, by (3.2) and (3.13), the inequality (3.9) holds.

Now we are in a position to give the proof of the theorem. It follows from (3.9) that

1

ω(Bη)
1
q
+λ

‖Cp,b
ϕ,s(f)‖Lq

ω(Bη) � ‖b‖ .
CMO

r∗
1

ω (Qn
p )

(∫
Z∗
p

|ϕ(y)|ψ(y)
(
ω(Bη+m)

ω(Bη)

)λ

dy

)
‖f‖ .

B
q∗
1
,λ

ω (Qn
p )
,

for any η ∈ Z. Next, by the condition λ < 0 and Proposition 2.9, we have

(ω(Bη+m)

ω(Bη)

)λ
�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

( |Bη+m|
|Bη |

)ζλ
� |s(y)|nζλp , if m ≤ 0,

( |Bη+m|
|Bη |

) (δ−1)λ
δ � |s(y)|

n(δ−1)λ
δ

p , otherwise.

Therefore, we have (ω(Bη+m)

ω(Bη)

)λ
� |s(y)|nζλp χ{|s(y)|p≤1} + |s(y)|

n(δ−1)λ
δ

p χ{|s(y)|p≥p}.

Consequently,

‖Cp,b
ϕ,s(f)‖ .

B
q,λ

ω (Qn
p )

� A2‖b‖ .
CMO

r∗
1

ω (Qn
p )
‖f‖ .

B
q∗
1
,λ

ω (Qn
p )
.

Therefore, Theorem 3.3 is completely proved.

According to Theorem 3.3, we also have the following result.

Corollary 3.4. Let the assumptions of Theorem 3.3 hold. If

B2 =

∫
Z∗
p

|y|nζλp logp
1

|y|p
|ϕ(y)|dy < ∞,

then

‖Hp,b
ϕ ‖ .

B
q∗1 ,λ

ω (Qn
p )→

.
B

q,λ

ω (Qn
p )

� B2‖b‖ .
CMO

r∗1
ω (Qn

p )
.

Theorem 3.5. Let 1 ≤ 	, q < ∞, 1 < q1, r1 < ∞ such that 1/q = 1/q1 + 1/r1, λ ≥ 0 and

β1 = β + n+γ
r1

. Let b ∈
.

CMO
r1

ω (Qn
p ) and ω(x) = |x|γp for γ > −n. Then, if

A3 =

∫
Z∗
p

|s(y)|
λ−β1− (n+γ)

q1
p ψ(y)|ϕ(y)|dy < ∞,

we have C
p,b
ϕ,s is bounded from MKβ1,λ

�,q1,ω
(Qn

p ) to MKβ,λ
�,q,ω(Q

n
p ).
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Proof. Using a similar argument as the inequality (3.1) above, we have

‖Cp,b
ϕ,s(f)χk‖Lq

ω(Qn
p )

� ‖b‖ .
CMO

r1
ω (Qn

p )
p

k(n+γ)
r1

∫
Z∗
p

|ϕ(y)|ψ1(y)‖fχk+m‖Lq1
ω (Qn

p )
dy,

for all k ∈ Z. Hence, by the condition β1 = β + n+γ
r1

and the Minkowski inequality, one has

‖Cp,b
ϕ,s(f)‖MKβ,λ

�,q,ω(Q
n
p )

= sup
k0∈Z

p−k0λ
( k0∑

k=−∞
pkβ�‖Cp,b

ϕ,s(f)χk‖�Lq
ω(Qn

p )

)1/�

≤ ‖b‖ .
CMO

r1
ω (Qn

p )

∫
Z∗
p

|ϕ(y)|ψ1(y) sup
k0∈Z

p−k0λ
( k0∑

k=−∞
pkβ1�‖fχk+m‖�

L
q1
ω (Qn

p )

)1/�
dy

≤ ‖b‖ .
CMO

r1
ω (Qn

p )

∫
Z∗
p

|ϕ(y)|ψ1(y)p
m(−β1+λ) sup

η0∈Z
p−η0λ

( η0∑
k=−∞

pkβ1�‖fχk‖�Lq1
ω (Qn

p )

)1/�
dy.

� A3‖b‖ .
CMO

r1
ω (Qn

p )
‖f‖

MK
β1,λ
�,q1,ω

(Qn
p )
.

Therefore, the proof of this theorem is finished.

As a consequence, we immediately have the boundedness of Cp,b
ϕ,s on weighted Herz p-adic spaces.

Corollary 3.6. Let the assumptions of Theorem 3.5 hold. Then, if

A4 =

∫
Z∗
p

|s(y)|
−β1− (n+γ)

q1
p ψ(y)|ϕ(y)|dy < ∞,

we have

‖Cp,b
ϕ,s(f)‖Kβ,�

q,ω(Qn
p )

� A4‖b‖ .
CMO

r1
ω (Qn

p )
‖f‖

K
β1,�
q1,ω

(Qn
p )
.

By Theorem 3.5, we also have the boundedness for commutators of the weighted Hardy-Littlewood
operators on weighted Morrey-Herz p-adic spaces. Namely, the following is true.

Corollary 3.7. Let the assumptions of Theorem 3.5 be fulfilled. If

B3 =

∫
Z∗
p

|y|
λ−β1− (n+γ)

q1
p logp

p

|y|p
|ϕ(y)|dy < ∞,

then

‖Hp,b
ϕ ‖

MK
β1,λ
�,q1,ω

(Qn
p )→MKβ,λ

�,q,ω(Q
n
p )

� B3‖b‖ .
CMO

r1
ω (Qn

p )
.

Theorem 3.8. Let 1 ≤ 	, q, q∗1 , r
∗
1 < ∞, 1 ≤ ζ ≤ r∗1, β ∈ R, β∗

1 < 0, b ∈
.

CMO
r∗1
ω (Qn

p ) and ω ∈ Aζ with
the finite critical index rω for the reverse Hölder condition and δ ∈ (1, rω). Assume that the
hypothesis (3.8) in Theorem 3.1 is true and

1

q∗1
+

β∗
1

n
=

1

q
+

β

n
. (3.14)

(i) If
1

q∗1
+

β∗
1

n
≥ 0 and

A5 =

∫
Z∗
p

(
|s(y)|

−nζ( 1
q∗1

+
β∗
1
n
)

p χ{|s(y)|p≤1} + |s(y)|
−n

(δ−1)
δ

( 1
q∗1

+
β∗
1
n
)

p χ{|s(y)|p≥p}

)
ψ(y)|ϕ(y)|dy < ∞,
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then

‖Cp,b
ϕ,s(f)‖ .

K
β,�,q

ω (Qn
p )

� A5‖b‖ .
CMO

r∗1
ω (Qn

p )
‖f‖ .

K
β∗
1 ,�,q∗1

ω (Qn
p )
.

(ii) If
1

q∗1
+

β∗
1

n
< 0 and

A6 =

∫
Z∗
p

(
|s(y)|

−nζ( 1
q∗
1
+

β∗
1
n
)

p χ{|s(y)|p≥p} + |s(y)|
−n

(δ−1)
δ

( 1
q∗
1
+

β∗
1
n
)

p χ{|s(y)|p≤1}

)
ψ(y)|ϕ(y)|dy < ∞,

then

‖Cp,b
ϕ,s(f)‖ .

K
β,�,q

ω (Qn
p )

� A6‖b‖ .
CMO

r∗
1

ω (Qn
p )
‖f‖ .

K
β∗
1
,�,q∗

1
ω (Qn

p )
.

Proof. Similarly to the proof for the inequality (3.9), for k ∈ Z, we also have

‖Cp,b
ϕ,s(f)χk‖Lq

ω(Qn
p )

� ‖b‖ .
CMO

r∗
1

ω (Qn
p )

∫
Z∗
p

|ϕ(y)|ψ(y) ω(Bk)
1
q

ω(Bk+m)
1
q∗1

‖f‖
L
q∗
1

ω (Bk+m)
dy,

where m = logp|s(y)|p. Thus, by using the Minkowski inequality and (3.14), we get

‖Cp,b
ϕ,s(f)‖ .

K
β,�,q

ω (Qn
p )

� ‖b‖ .
CMO

r∗1
ω (Qn

p )

( ∞∑
k=−∞

ω(Bk)
β�/n

(∫
Z∗
p

|ϕ(y)|ψ(y) ω(Bk)
1
q

ω(Bk+m)
1
q∗
1

‖f‖
L
q∗1
ω (Bk+m)

dy
)�)1/�

≤ ‖b‖ .
CMO

r∗
1

ω (Qn
p )

( ∫

Z∗
p

|ϕ(y)|ψ(y)
( ∞∑

k=−∞

( ω(Bk)
1
q
+β

n

ω(Bk+m)
1
q∗1

‖f‖
L
q∗
1

ω (Bk+m)

)�)1/�
dy

)

= ‖b‖ .
CMO

r∗1
ω (Qn

p )

( ∫
Z∗
p

|ϕ(y)|ψ(y)
( ∞∑

k=−∞

(ω(Bk)
1
q∗
1
+

β∗
1
n

ω(Bk+m)
1
q∗
1

‖f‖
L
q∗1
ω (Bk+m)

)�)1/�
dy

)
.

This implies that

‖Cp,b
ϕ,s(f)‖ .

K
β,�,q

ω (Qn
p )

� ‖b‖ .
CMO

r∗1
ω (Qn

p )

(∫
Z∗
p

|ϕ(y)|ψ(y)×

×
( ∞∑

k=−∞

{( ω(Bk)

ω(Bk+m)

) 1
q∗
1
+

β∗
1
n

m∑
η=−∞

(ω(Bk+m)

ω(Bk+η)

)β∗
1
n
ω(Bk+η)

β∗
1
n ‖fχk+η‖

L
q∗
1

ω (Qn
p )

}�)1/�
dy

)
. (3.15)

On the other hand, by Proposition 2.9 with β∗
1 < 0 and η ≤ m, we have

(ω(Bk+m)

ω(Bk+η)

)β∗
1
n �

( |Bk+m|
|Bk+η|

)β∗
1(δ−1)

nδ
= p(m−η)β∗

1 (δ−1)/δ . (3.16)

Now, by using Proposition 2.9, we consider the following two cases.

Case 1: 1
q∗1

+
β∗
1
n ≥ 0. We get

( ω(Bk)

ω(Bk+m)

) 1
q∗1

+
β∗
1
n �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( |Bk|
|Bk+m|

)ζ( 1
q∗
1
+

β∗
1
n
)
= p

−mnζ( 1
q∗
1
+

β∗
1
n
)
= |s(y)|

−nζ( 1
q∗1

+
β∗
1
n
)

p , if m ≤ 0,

( |Bk|
|Bk+m|

) (δ−1)
δ

( 1
q∗
1
+

β∗
1
n
)
= p

−mn
(δ−1)

δ
( 1
q∗1

+
β∗
1
n
)

= |s(y)|
−n (δ−1)

δ
( 1
q∗1

+
β∗
1
n
)

p , otherwise.

(3.17)
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Case 2: 1
q∗1

+
β∗
1
n < 0. We also get

( ω(Bk)

ω(Bk+m)

) 1
q∗
1
+

β∗
1
n �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( |Bk|
|Bk+m|

) (δ−1)
δ

( 1
q∗
1
+

β∗
1
n
)
= p

−mn
(δ−1)

δ
( 1
q∗
1
+

β∗
1
n
)

= |s(y)|
−n (δ−1)

δ
( 1
q∗1

+
β∗
1
n
)

p , if m ≤ 0,

( |Bk|
|Bk+m|

)ζ( 1
q∗
1
+

β∗
1
n
)
= p

−mnζ( 1
q∗1

+
β∗
1
n
)
= |s(y)|

−nζ( 1
q∗
1
+

β∗
1
n
)

p , otherwise.

(3.18)

To prove the part (i), by (3.15), (3.16) and (3.17), we have

‖Cp,b
ϕ,s(f)‖ .

K
β,�,q

ω (Qn
p )

� ‖b‖ .
CMO

r∗
1

ω (Qn
p )

( ∫
Z∗
p

|ϕ(y)|ψ(y)
(
|s(y)|

−nζ( 1
q∗
1
+

β∗
1
n
)

p χ{|s(y)|p≤1}

+ |s(y)|
−n

(δ−1)
δ

( 1
q∗
1
+

β∗
1
n
)

p χ{|s(y)|p≥p}

)
T(y)dy

)
,

where

T(y) =
( ∞∑

k=−∞

{ m∑
η=−∞

p(m−η)β∗
1 (δ−1)/δω(Bk+η)

β∗
1
n ‖fχk+η‖

L
q∗
1

ω (Qn
p )

}�)1/�
.

By applying the Minkowski inequality again and β∗
1 < 0, we have

T(y) ≤
m∑

η=−∞
p(m−η)β∗

1 (δ−1)/δ
{ ∞∑

k=−∞

(
ω(Bk+η)

β∗
1
n ‖fχk+η‖

L
q∗1
ω (Qn

p )

)�}1/�

� ‖f‖ .
K

β∗
1
,�,q∗

1
ω (Qn

p )
.

Thus we get

‖Cp,b
ϕ,s(f)‖ .

K
β,�,q

ω (Qn
p )

� A5‖b‖ .
CMO

r∗
1

ω (Qn
p )
‖f‖ .

K
β∗
1
,�,q∗

1
ω (Qn

p )
.

This shows that the part (i) is proved.

Similarly, by making (3.15), (3.16), (3.18) and estimating as above, we also have

‖Cp,b
ϕ,s(f)‖ .

K
β,�,q

ω (Qn
p )

� A6‖b‖ .
CMO

r∗
1

ω (Qn
p )
‖f‖ .

K
β∗
1
,�,q∗

1
ω (Qn

p )
.

Theorem 3.8 is proved.

Corollary 3.9. Let 1 ≤ 	, q, q∗1 , r
∗
1 < ∞, 1 ≤ ζ ≤ r∗1, β ∈ R, β∗

1 < 0, b ∈
.

CMO
r∗1
ω (Qn

p ) and ω ∈ Aζ with
the finite critical index rω for the reverse Hölder condition and δ ∈ (1, rω). Assume that the
inequality (3.8) in Theorem 3.3 and the relation (3.14) in Theorem 3.8 are true.

(i) If
1

q∗1
+

β∗
1

n
≥ 0 and

B5 =

∫
Z∗
p

|y|
−nζ( 1

q∗
1
+

β∗
1
n
)

p logp
1

|y|p
|ϕ(y)|dy < ∞,

then

‖Hp,b
ϕ ‖ .

K
β∗
1 ,�,q∗1

ω (Qn
p )→

.
K

β,�,q

ω (Qn
p )

� B5‖b‖ .
CMO

r∗1
ω (Qn

p )
.
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(ii) If
1

q∗1
+

β∗
1

n
< 0 and

B6 =

∫
Z∗
p

|y|
−n (δ−1)

δ
( 1
q∗1

+
β∗
1
n
)

p logp
1

|y|p
|ϕ(y)|dy < ∞,

then

‖Hp,b
ϕ ‖ .

K
β∗
1 ,�,q∗1

ω (Qn
p )→

.
K

β,�,q

ω (Qn
p )

� B6‖b‖ .
CMO

r∗1
ω (Qn

p )
.
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